162. Thermal Methyl-Group Transfer between Methylcobalt(II1) Corrinates and Cobalt(I1) Corrinates. Equilibration Experiments with Heptamethyl Cobyrinates and Cobalamins

by **Bernhard Krautler*, Mark Hughes,** and **Christian Caderas**

Laboratorium für Organische Chemie, ETH Zürich, Universitätstrasse 16, CH-8092 Zürich

(22.VIII. 86)

Separate neutral aqueous solutions of either a) methylcob(II1)alamin **(2)** and (heptamethyl cob(I1)yrinate) perchlorate **(3)** or of b) cob**(II)alamin (** = vitamin B_{12r} ; **4)** and $[Co\beta$ -methyl(heptamethyl cob(III)yrinate)) perchlorate (5) equilibrated thermally at r.t. according to $2 + 3 \rightleftarrows 4 + 5$. The corresponding equilibrium constant K_e . was determined $(K_e = 0.63 \pm 0.15)$. This equilibration experiment indicates that the coordination of the nucleotide function in methylcob(1I)alamin **(2)** hardly affects the thermodynamics of the Co-C bond homolysis in aqueous solution when compared to nucleotide-free methylcorrinoids such as *5.*

Introduction. – The biological role of the coenzyme B_{12} (= (5-deoxyadenosyl)cob(II1)alamin; **1)** [1-31 and of the methylcorrinoids [4a-c] such as methylcob(II1)alamin **(2)** has been closely associated with the reactivity of the Co-C bond in organocorrinoids [2] [S] [6]. The weak organometallic bond has been found to be further labilized kinetically towards homolytic cleavage in some organocobalamins (related to **1** and **2)** as a result of the intramolecular axial coordination of the unique nucleotide function [2] [7]. It has not been clarified, however, to what extent the coordination of the dimethylbenzimidazole function in organocobalamins also affects the $Co-C$ bond in a thermodynamic sense. We report here on a first series of equilibration experiments that point to the negligible *'trans'* effect of the nucleotide base on the homolysis of the Co-C bond in **2.**

Results. - When an equimolar solution of **2** [8a] and (heptamethyl cob(1I)yrinate) perchlorate **(3)** [8b] was stored in deoxygenated CH,OH/O.OLM aq. phosphate buffer $(pH = 7)$ 2:1 at r.t. for 16 days with protection from light *(Exper. A)¹)*, partial conversion to cob(II)alamin **(4)** [8c] and $[Co\beta$ -methyl(heptamethyl cob(III)yrinate)] perchlorate **(5)** [8b] [8d] occurred. Likewise, when a *ca.* equimolar solution of **4** and **5** in the same solvent mixture was stored under the same conditions for 16 days') *(Exper. B),* partial conversion to **2** and **3** was found. UV/VIS spectra of the equilibrated mixtures indicated no significant formation of nonalkylated cobalt(III) corrinates²). Rapid air oxidation of the Co(II) species after addition of 1% HCN in CH₁OH produced diamagnetic cobalt(III) corrinates, amenable to $H-NMR$ analysis³). The oxidized equilibrium mixtures were partitioned between CH₂Cl₂ and H₂O to separate the heptamethyl cob(III)yrinates *(i.e.*

^{&#}x27;) Control experiments indicated a t_{γ_2} of the equilibration of *ca*. 3 days (by TLC and UV/VIS).

²) Compound **8** and (diaquo)cobalt(III) corrinates show a strong UV-absorption band near 350 nm, **see** *[MI.*

^{3,} In the control experiments, the 'H-NMR analyses of the entire reaction mixtures at this stage agreed with the results obtained here after the subsequent separation.

dicyano(heptamethy1 cob(II1)yrinate) (= 'cobester'; **6)** [Sd] and **5)** from the cob- (III)alamins (*i.e.* 2 and vitamin $B_{12}(7)$). The dried CH₂Cl₂ extract from *Exper. A* contained the cobyrinates **5** and **6** with $5/6 = (0.81 \pm 0.1)$:1 according to ¹H-NMR analysis (300) MHz, CDCl_i; see *Fig. b* $)$ ⁴ $)$ ⁵). Correspondingly, the material from the aqueous phase of *Exper. A* was identified by its 300-MHz 'H-NMR spectrum (in D,O) as **2** and **7** only with $2/7 = (1.23 \pm 0.1)$:1⁶). In the oxidized mixture of *Exper. A*, the corrins were, therefore, present in a ratio $[7] \cdot [5]/[2] \cdot [6] = 0.66 \pm 0.15$. Analogous analysis of the equilibrated mixture of *Exper. B* (starting with **4** and **5**) gave $[7] \cdot [5]/[2] \cdot [6] = 0.52 \pm 0.15$. From this

- **5** $Co(L, X) = Co(HI)$, $L = CH_{3}$, $X = ClO_4$
- **6** $Co(L, X) = Co(HI), L = X = CN$

^{4,} Taken from the integral of the vinyl-proton **s.**

^{5,} The ¹H-NMR spectrum also indicates the presence, besides 5, of a trace of its isomer with an α -bound CH₃ group at the Co(III) center [8b], in a ratio of *ca*. 15:1.

^{6,} Taken as an average of the integrals of the low-field 'H-NMR signals of the mixture **2/7** (see *Fig. a).*

mixture in D₂O (*X* marks selected signals due to 2, *o* those of 7). b) Spectrum of heptamethyl-cob(III)yrinate mixture in CDCl₃ (*X* marks selected signals due to 5, σ those of 6).

and a second pair of similar experiments, the equilibrium constant K_{ε} was determined to be 0.63 ± 0.15 . iments, the equilibrium
 $2+3$ $\xrightarrow{\textbf{K}_e} 4+5$

$$
2+3 \xrightarrow{\mathbf{K}_{\rm e}} 4+5 \tag{1}
$$

Discussion. – These experiments document the operation of a thermal CH₃-group transfer between vitamin- B_{12} -derived methylcobalt(III) corrinates and cobalt(II) corrinates consistent with *Eqn. I*⁷). In analogy to studies by *Endicott et al.* [9] on 'methylbridged electron-transfer reactions' and by *Johnson et al.* [lo], a CH, transfer not involving free CH₃ radicals probably also operates here⁸). Such a mechanism could presumably also account for the equilibration of $C_0\alpha$ - and $C_0\beta$ -methylated nucleotide-free cobyrinicacid derivatives in CO-containing aqueous solution, as observed by *Friedrich et al.* [12].

Moreover, the equilibration experiments show that the Co-C bond in **2** is not destabilized towards homolysis by the coordination of the dimethylbenzimidazole base⁷), but rather that this bond is slightly more stable under the reaction conditions $(K_e = 0.63)$ compared to **59).** This result suggests that the earlier found (kinetic) weakening of the

^{&#}x27;) The 'H-NMR and **UVjVIS** spectra confirmed the intact nucleotide coordination to the Co center in **2** and **4** under the conditions of the equilibration.

^{&#}x27;) According to preliminary experiments, air does not prevent the thermal equilibration in toluene solution (and in the presence of 3) of 5 and of its isomer bearing the Co-bound CH₃ group on the α -face [8b] [11].

^{9,} This result, obtained here with the lipophilic nucleotide-free cobyrinates **3** and *5,* meanwhile has been similarly reproduced also with the corresponding natural cohinamide derivatives *(B. Kruutler,* unpublished).

Co-C bond by the intramolecular nucleotide coordination in organocobalamins **[2]** [7] depends upon the steric bulk of the organoligand (see also [13]).

The thermodynamic *'trans'* effect of the nucleotide on the Co-C bond homolysis in **2** can also be derived independently from the nucleotide basicity in $2 (pK_s = 2.7)$ [7c] and in the homolysis product **4** ($pK_a \approx 2.9$) [14], the similarity of the two pK_a values being consistent with our result. However, in **2** the base is bonded considerably weaker than in aquocob(III)alamin **(8;** $pK_a \approx -2.4$) [15], and, as reported by *Hogenkamp et al.* [16], **2** donates its CH, group to a nucleotide-free aquocobalt(II1) corrinate with formation **of 8.** Clearly, the heterolytic CH₃ loss $2 \rightarrow 8$ [16] is subject to a 'normal' thermodynamic *'trans'* effect of the nucleotide base [17]. This is not the case, however, for the homolysis $2\rightarrow 4$, where the oxidation state of the corrin-bound metal center changes from Co(II1) to $Co(II)$ (see also [2]).

These observations are in agreement with the interpretation, that the strength of the nucleotide coordination in competition with solvent (as expressed by the pK_a) in methylated and demethylated 'complete' corrinoids controls the direction of the $CH₃$ -group transfer in an equilibrium with analogous corrinoids lacking the base. **As** a consequence, (in a thermodynamic sense) cob(I)alamin (= vitamin B_{12}) should be able to trap the CH₃ group from nucleotide-free methylcobalt(II1) corrinates, since the transition from the cobalt(I) corrinate vitamin B_{12s} (nucleotide: $pK_a \approx 5.6$) [18] to the cobalt(III) corrinate 2 is accompanied and driven by the coordination of the nucleotide base. Such effects could be relevant to enzymatic CH,-group transfer reactions involving protein-bound **2,** where the ability of the nucleotide or of other ligands to coordinate would be subject to control by the enzyme.

Further studies on thermally induced alkyl-group transfers between alkylcobalt(II1) corrinates and nonalkylated cobalt corrinates should allow the assessment of the effects of the nucleotide coordination on the Co-C bond strengths and of the Co-bound alkyl groups on the nucleotide coordination.

We would like to thank Prof. A. Eschenmoser for his support of this work, Prof. *J. Halpern* for an instructive discussion, and the *Swiss Nationul Scrmce F'oundu/ion fot-* financial support.

Experimental **Part**

1. *General.* Solvents and reagents: Methylcob(1ll)alamin (2), crystalline [Sa]; (heptamethyl cob(I1)yrinate) perchlorate **(3),** crystalline, from dicyano(heptamethy1 cob(II1)yrinate) (= 'cobester' [ad]; *6)* by reduction with HCOOH [8b]; cob(II)alamin (= vitamin B_{12r}; 4), crystalline, by catalytic reduction [8c]; [Coß-methyl(heptamethyl cob(II1)yrinate)l perchlorate *(5),* powder [ab]; CH,OH, *Fluku,* purist.. *p.u.;* H,O, 'nanopure', *Ultrafilter* (Barnstead, **USA);** formic acid, *Fluku, puriss. p.u.;* KCN, *Mcrck. p.u.;* NaCIO4, *Fluku, p.u.* TLC: **CH,CI,,** Et,O, tetrahydrofuran (THF), and CH₃OH, all practical grade, redistilled; silica gel plates, *Merck* Art. 5721; reversed plates, C₁₂-'opti-up', *Antec AG*, Bennwil, Switzerland. ¹H-NMR: 300.14 MHz, *Bruker WM-300*, CDCl₃ (δ $(TMS) = 0$ ppm) or D_2O (δ (HDO) = 4.71 ppm); sample preparation in the dark room.

2. *Experimental Setup.* The equilibration experiments and workup were carried out with strict protection from light (equilibration: homogeneous solutions in tightly stoppered **flasks,** stored at **r.t.** in a dry box *(Mecaplex GB-80);* workup: **dark** room with minimal exposure to white light).

3. Equilibration *Exper. A.* In a soln. of $2(15.9 \text{ mg}, 11.8 \text{ µmol})$ in CH₃OH(1 ml) and 0.01M aq. phosphate buffer (pH 7; 0.5 ml), 13.7 mg of **3 (1** 1.8 pmol) were dissolved with protection from light and under an inert atmosphere *(Mecaplex box, < 10 ppm of O₂). The soln, was allowed to equilibrate for 16 d, prior to removal of the flask from* the dry box and addition of 4 ml of 1 %, HCN/CH,OH in the presence of air. The mixture was taken into a dark room, and the solvents were evaporated at r.t. The residue was partitioned between 20 ml each of H_2O and of CH₂Cl₂. The aq. phase was evaporated (40°), the residue dried for 2 h at r.t./0.5 Torr and then analyzed by ¹H-NMR (300 MHz, D₂O; see *Fig.a*). The spectrum exhibited signals due to **2** and vitamin B₁₂ (7) only, ratio (1.23 ± 0.1) : l as determined from the integrals of the low-field signals. The org. phase was washed with 30 ml of 0.01 M phosphate buffer (pH 7) containing *ca.* 10 mg of KCN and *ca. SO* mg of NaCIO,, dried by filtration through a plug of dried cotton wool and evaporated at r.1. The residue was again dried for 2 h at r.t./0.5 Torr and subjected to ¹H-NMR analysis (300 MHz, CDCl₃, see *Fig.b*). The spectrum exhibited signals due to 5 and 6^5), ratio (0.81 ± 1) : l as taken from the integral of the vinyl s at 6.62 and 5.57 ppm.

4. *Equilibration Exper. B.* A soln. of 4(8.5 mg, 6.4 µmol) and 5(7.7 mg, 6.7 µmol) in CH₃OH (0.5 ml) and 0.01*M* aq. phosphate buffer (pH 7, 0.25 ml) was stored for 16 d and subsequently analyzed in the same manner and in parallel to the above described *Exper.A.* Analysis of the samples of this equilibration by 'H-NMR gave spectra that were similar to the ones from *Exper. A* and from which the aq. phase was calculated to contain **2** and 7 in a ratio of (1.25 ± 0.2) : l and the org. phase 5 and 6 in a ratio of (0.65 ± 0.1) : l.

5. Control Experiments. Exper. A and *B* were repeated using 12 mg of 2 (9.1 μ mol)/10 mg of 3 (8.8 μ mol; *Exper.* CA) and 8.6 mg of 5 (7.5 µmol)/10 mg of 4 (7.5 µmol; *Exper. CB*), resp., dissolved in 1.5 ml of CH₃OH/phosphate buffer 2:1. The course of the reaction was followed by UV/VIS and TLC (carried out with protection from light): Samples (30-µI) were removed periodically and diluted with 400 µl of CH₃OH anaerobically to record the UV/VIS. The sample was then oxidized by addition to *ca*. 0.1 ml of 1% HCN/CH₃OH in the presence of air and evaporated to dryness. The residue was partitioned between *ca*. 1 ml each of H₂O and CH₂Cl₂ and the org. phase shaken with *ca.* 1 ml of aq. phosphate buffer (0.1m, pH 7) containing a trace of KCN. The 2 phases were analyzed by UV/VIS and (after concentration) by TLC. TLC of a sample of the org. phase on silica-gel plates (Et₂O/CH₂Cl₂/THF 2:2:1) separated 5 $(R_f 0.48)$ and 6 $(R_f 0.40)$, while TLC of a sample of the aq. phase on reversed-phase plates (CH₃OH/ H_2O 1:2) separated 2 ($R_fO.2$) and 7 ($R_fO.35$). As expected, the original equilibration mixtures showed the starting materials, while, over 14 d, the product ratios estimated by TLC qualitatively approached the values of the subsequent 'H-NMR analysis (300 MHz, CD,OD) of the oxidized equilibrated mixtures *(Exper. CA;* 2/5/6/ $7 = 1.29:1:1.25:1.15$ ($K_c = 0.71 \pm 0.2$); *Exper. CB*: 2/5/6/7 = 1.27:1:1.18:1.0 ($K_c = 0.66 \pm 0.2$)).

REFERENCES

- (I] a) H. A. Barker, H. Weissbach, R. D. Smyth, *Proc. Null. Acad. Sci. USA* 1958, *44,* 1093; b) P. G. Lenhert, D.C. Hodgkin, *Nature (London)* 1961,192, 937.
- [2] J. Halpern, *Science* 1985,227, 869.
- [3] D. Dolphin, Ed., 'B₁₂', Wiley Interscience, New York, 1982.
- [4] a) R.T. Taylor in [3], Vol. 11, p. 307; b) L.G. Ljungdahl, H.G. Wood, in [3], Vol. **11,** p. 166; c) R. K. Thauer, Biol. Chem. Hoppe Seyler 1985, 366, 103; d) C. Gianotti in [3], Vol. I, p. 393.
- [5J J. Halpern, in *[3],* Vol.1, p.501.
- [6] a) J. Retey, in **[3]** Vol. **11,** p. 357 and ref. therein; b) B. Kriutler, *Helu. Chim. Artu* 1984,67, *1053.*
- *[7]* a) J. H. Grate, G. N. Schrauzer, *J. Am. Chem. Soc.* 1979, *101,* 4601; b) **S.** M. Chemaly, **J.** *M.* Pratt, *J. Chem. Soc., Dalion Trans.* 1980,2274; c) J. M. Pratt in [3], Vol. **I,** p. 326.
- [XI a) D. Dolphin, 'Vitamins and Coenzymes', in 'Methods in Enzymology', Eds. D. **H.** McCormick and L.D. Wright, Academic Press, New York, 1971, Vol. XVIIIC, pp. 34; h) B. Kriutler, C. Caderas, *Helu. Chim. Acta* 1984,67, 1891; c) H. U. Blaser, J. Halpern, *J. Am. Chem. Sor.* 1980,102, 1684; d) R. Keese, L. Werthemann, **A.** Eschenmoser, published in L. Werthemann's 'Untersuchungen an Co(l1)- und Co(ll1)-Komplexen des Cobyrinsaeureheptamethylesters', Dissertation No. 4097, ETH-Zurich, Juris Verlag, Zurich, 1968.
- [9] J. F. Endicott, K.P. Balakrishnan, Ch.-L. Wong, *J. Am. C'hem. Soc.* 1980, *102,* 5519.
- [10] D. Dodd, M. D. Johnson, B. L. Lochmann, *J. Am. Chem. Soc.* 1977, 99, 3664.
- [II] I. Hubacek, Diploma Thesis, ETH-Zürich, 1984.
- [I21 W. Friedrich, R. Messerschmidt, *2. Natirrforsch.,* B 1970,25, 972.
- [I31 D. W. Christianson, W. N. Lipscomb, *J. Am. Chem. Soc.* 1985, 107, 2682.
- [I41 D. Lexa, J. **M.** Saveant, *J.* Zickler, *J. Am. Chem. SOC.* 1977,99, 2786.
- [IS] G. C. Hayward, H.A. 0. Hill, J. M. Prdtt, N. J. Vanston, R. **J.** P. Williams, *J. Chem. SOC.* 1965, 6485.
- [16] Y. T. Fanchiang, G.T. Bratt, H.P. C. Hogenkamp, *Proc. Nu//. Acud. Sci. USA* 1984, *HI,* 2698.
- [17] J. M. Pratt, 'Inorganic Chemistry of Vitamin B_{12} ', Academic Press, London, 1972, p. 114.
- [IS] K. L. Brown, J. H. Hakimi, D. M. Nuss, **J.** D. Montejano, D. W. Jacobson, *Inurg. C'hem.* 1984,23, 1463.